First-in-human evaluation of the human monoclonal antibody vantictumab (OMP-18R5; anti-Frizzled) targeting the WNT pathway in a Phase I study for patients with advanced solid tumors

David C. Smith,¹ Lee Rosen,² Rashmi Chugh,¹ Jonathan Goldman,² Lu Xu,³ Ann M. Kapoun,⁴ Rainer K. Brachmann,⁴ Robert Dupont,⁵ Robert Stagg,⁶ Tony Tolcher,⁷ Kyriakos Papadopoulos⁸
¹University of Michigan, Ann Arbor, MI, USA; ²University of California, Los Angeles, CA, USA; ³OncoMed Pharmaceuticals, Redwood City, CA, USA; ⁴START, San Antonio, TX, USA

BACKGROUND
• Frizzled is a large family of G-protein-coupled receptors (GPCRs) that may be responsible for the limited success of systemic therapies in the metastatic setting.
• The activated Wnt pathway is strongly associated with CSCs.
• Vantictumab is a fully human IgG1 monoclonal antibody that was identified by binding to Frizzled 7.
• Vantictumab blocks five Frizzled receptors (1, 3, 5, 7, and 8) and inhibits Wnt signaling.
• Vantictumab has broad anti-tumor activity in patient-derived xenograft (PDX) models, and in particular when combined with standard of care chemotherapies, such as taxanes.
• Vantictumab selectively reduces the frequency of CSCs in these models.
• Vantictumab can also promote widespread tumor cell differentiation, as shown for pancreatic cancer models. For more details, see Gurney et al., PNAS 119, 11717 (2012)

BASELINE CHARACTERISTICS

Number of patients	23
Gender (male/female)	15 (65%)
ECOG score	1 (77%)
Number of prior systemic therapies (median)	3 (9)

PHARMACODYNAMICS

Vantictumab affects Wnt-related gene expression patterns in hair follicles
• Vantictumab causes increased expression of Wnt pathway target genes and increased expression of differentiation genes (VanhN18R5; in red).
• Hair biopsies taken in triplicate in each cohort show no significant changes in the same genes (Vanh; in grey).
• Tumors complete analyzed ≥3 collected 1 week after initiation 1 collected 3 weeks after initiation.

SAFETY

Related adverse events observed in >5% of patients

PHARMACOKINETICS

NONCLINICAL EFFICACY DATA

Activity of vantictumab in patient-derived pancreatic cancer xenografts

SCHEDULED AND ASSESSMENTS

STUDY OVERVIEW
• Patients with advanced solid tumors
• 3+ dose escalation
• Dose levels:
 • 0.5 mg/kg every two weeks
 • 1.25, 5 and 10 mg/kg every three weeks
 • DIC assessment window: 28 days
• Pharmacokinetic: blood RNA, total bilirubin, tumor (optional)
• Tumor assessments: every 8 weeks

PHARMACODYNAMICS

Vantictumab affects Wnt-related gene expression patterns in hair follicles
• Vantictumab causes increased expression of Wnt pathway target genes and increased expression of differentiation genes (VanhN18R5; in red).
• Hair biopsies taken in triplicate in each cohort show no significant changes in the same genes (Vanh; in grey).
• Tumors complete analyzed ≥3 collected 1 week after initiation 1 collected 3 weeks after initiation.

SAFETY

Related adverse events observed in >5% of patients

TIME ON STUDY

NEUROENDOCRINE TUMORS

CONCLUSIONS
• Vantictumab is well tolerated.
• Further dose escalation is ongoing.
• Vantictumab clearance is dose-dependent, consistent with target-mediated disposition.
• Vantictumab has pharmacodynamic (PD) effects on hair follicles.
• PD effects are consistent with Wnt biology.
• PD effects extend beyond serum exposure.
• Vantictumab has PD effects on bone, as evidenced by B-CTX increases.
• Increased bone turnover can be safely managed through careful monitoring, prophylactic Vitamin D and calcium carbonate, and administration of zoledronic acid, if indicated.
• Prolonged stable disease in 3 patients with neuroendocrine tumors may represent single-agent activity.

ACKNOWLEDGMENTS
We thank the patients who participated in this study and their families. Vantictumab is part of OncoMed's Wnt pathway collaboration with Bayer HealthCare.

ASCO Annual Meeting, Chicago, 3 June 2013