A first-in-human Phase 1 study of the anti-cancer stem cell agent OMP-54F28 (FZD8-Fc), a decoy receptor for WNT ligands, in patients with advanced solid tumors

Antonio Jimeno,1 Michael Gordon,2 Rashmi Chugh,3 Wells Messersmith,1 David Mendelson,2 Jakob Dupont,4 Robert Stagg,4 Ann M. Kapoun,4 Lu Xu,4 Rainer K. Brachmann,4 David C. Smith3

1University of Colorado, Aurora, CO, USA; 2Pinnacle Oncology Hematology, Scottsdale, AZ, USA; 3University of Michigan, Ann Arbor, MI, USA; 4OncoMed Pharmaceuticals, Redwood City, CA, USA
Disclosures

• Laboratory Research Support:
 • NIH R01CA149456
 • NIH R21DE019712
 • Department of Defense CA093422
 • NIH R21CA156114
 • NIDCR 1R56DE023245
 • Onconova Therapeutics
 • Infinity Pharmaceuticals
 • Oncothyreon

• Clinical Research Support:
 • Acceleron
 • Curis, Inc
 • Genentech, Inc
 • Infinity Pharmaceuticals
 • OncoMed Pharmaceuticals, Inc
 • Onconova Therapeutics
 • Oncothyreon
 • Regeneron Pharmaceuticals

Presented by: Antonio Jimeno MD PhD, University of Colorado, Aurora, CO
Therapeutic promise of targeting CSCs

CSCs have been implicated in tumor progression, recurrence, and metastasis

Frank et al., J Clin Inv 120:41-50 (2010)

CSC = cancer stem cell

Presented by: Antonio Jimeno MD PhD, University of Colorado, Aurora, CO
The WNT pathway

WNT as an anti-cancer stem cell target

- Cancer Stem Cells (CSCs) may be responsible for resistance to anti-cancer therapies
- Activated WNT pathway is strongly associated with CSCs
- OMP-54F28 (FZD8-Fc)
 - Recombinant fusion protein (immunoadhesin)
 - Extracellular ligand binding domain of human frizzled (FZD) 8 receptor + human IgG1 Fc fragment
- Potent antagonist of WNT signaling
- Single-agent and combination efficacy in many patient-derived xenograft models
- Promotes differentiation
- Inhibits metastatic growth
- Reduces CSC frequency

OMP-54F28 structure

Extracellular WNT binding domain of FZD8
Immunoglobulin Fc domain

WNT-activated β-catenin reporter gene assay
Single-agent activity of OMP-54F28 in pancreatic cancer PDX model

PN4: adenocarcinoma of pancreas
FZD8-Fc (OMP-54F28): 15 mg/kg, weekly
PDX = patient-derived xenograft

Reduction in CD44+ frequency

Increase in Mucin-producing cells

Control Ab
FZD8-Fc

Presented by: Antonio Jimeno MD PhD, University of Colorado, Aurora, CO
OMP-54F28 reduces tumor-initiating cell frequency in pancreatic cancer PDX model

PN4: adenocarcinoma of pancreas
FZD8-Fc (OMP-54F28): 15 mg/kg, weekly
Gemcitabine: 10 mg/kg, weekly
PDX = patient-derived xenograft
CSC = cancer stem cell

Presented by: Antonio Jimeno MD PhD, University of Colorado, Aurora, CO
OMP-54F28 and bone biology

- WNT pathway fosters bone formation and inhibits bone resorption
- Phase 1a for anti-Frizzled antibody vantictumab:
 - Grade 3 compression fracture after minor fall on Day 110
- Increases in bone turnover marker \(\beta \)-CTX reflect bone loss
- Zoledronic acid (ZA) protects from OMP-54F28 effects on bone in preclinical in vivo models
- \(\beta \)-CTX monitoring and ZA administration in case of \(\beta \)-CTX doubling were incorporated into the OMP-54F28 Phase 1 trial

Control 54F28 54F28 + ZA

ZA (100 µg/kg) 54F28 (20 mg/kg) 2 weeks 2 weeks

Analysis

Presented by: Antonio Jimeno MD PhD, University of Colorado, Aurora, CO
Study objectives

• Primary objectives
 – Safety of OMP-54F28 in patients with previously treated solid tumors

• Secondary objectives
 – Pharmacokinetics of OMP-54F28
 – Immunogenicity of OMP-54F28
 – Preliminary efficacy of OMP-54F28

• Exploratory objectives
 – Biomarkers
 – Blood RNA, hair follicles
 – Tumor (optional)
Study design

OMP-54F28 intravenously every 3 weeks (until progressive disease, unacceptable toxicity or withdrawal of consent)

1 mg/kg

2.5 mg/kg

5 mg/kg

10 mg/kg

15 mg/kg

20 mg/kg

Every 7 days
- Safety assessments, including standard laboratories

Every 28 days
- Bone turnover markers

Every 56 days
- Tumor assessments and DEXA scans

Advanced solid tumors
3+3 design

Presented by: Antonio Jimeno MD PhD, University of Colorado, Aurora, CO
Key eligibility criteria

• Inclusion Criteria
 – Age ≥18 years
 – Histologically confirmed, metastatic or unresectable malignancy
 – No remaining standard therapy options of proven benefit
 – ECOG PS 0-1
 – Adequate organ and marrow function

• Exclusion criteria
 – Brain metastases
 – Bleeding disorder or coagulopathy
 – Therapeutic anticoagulation
 – Heart failure (NY Heart Association Classification III or IV)
 – T-score ≤ -2.5 (diagnostic for osteoporosis)
 – Bone metastases AND prior pathologic fracture, need for orthopedic intervention or NOT receiving a bisphosphonate or denosumab
 – Glucocorticoids for ≥4 weeks (daily dose equivalent of ≥5 mg oral prednisone)
 – β-CTX >1000 pg/mL (bone turnover marker)
Dose-limiting toxicity (DLT) criteria

• Assessment window
 – From 1st dose to 28 days after 1st dose

• Type of adverse event (AE)
 – Any related Grade ≥3 adverse event
 – Except for Grade 3 infusion reaction that resolves within 24 hours

Version 4.02 of Common Toxicity Criteria for Adverse Events
Patient characteristics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>26</td>
</tr>
<tr>
<td>Median age, yr (range)</td>
<td>54 (26-79)</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>17 (65%)</td>
</tr>
<tr>
<td>ECOG score</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>11 (42%)</td>
</tr>
<tr>
<td>1</td>
<td>15 (58%)</td>
</tr>
<tr>
<td>Number of prior systemic therapies, median (range)</td>
<td>3 (0-9)</td>
</tr>
<tr>
<td>Tumor types</td>
<td></td>
</tr>
<tr>
<td>Colon cancer</td>
<td>4 (15%)</td>
</tr>
<tr>
<td>Pancreatic cancer</td>
<td>3 (12%)</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>2 (8%)</td>
</tr>
<tr>
<td>Desmoid tumor</td>
<td>2 (8%)</td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td>2 (8%)</td>
</tr>
<tr>
<td>Renal cell cancer</td>
<td>2 (8%)</td>
</tr>
<tr>
<td>Other</td>
<td>11 (41%)</td>
</tr>
</tbody>
</table>
Dose escalation, DLTs and Grade ≥3 AEs

- 20 mg/kg q3w as highest dose level
 - Estimated to be double the target efficacious dose
- No DLTs encountered
- Maximum tolerated dose not determined
- One related Grade ≥3 AE total
 - Grade 3 increase in serum phosphorus (20 mg/kg)
Related Grade 1 and 2 adverse events (≥10%)

<table>
<thead>
<tr>
<th>Cohort</th>
<th>1 (n=3)</th>
<th>2 (n=3)</th>
<th>3 (n=3)</th>
<th>4 (n=5)</th>
<th>5 (n=3)</th>
<th>6 (n=3)</th>
<th>7 (n=6)</th>
<th>Total (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose level (mg/kg, q3w)</td>
<td>0.5</td>
<td>1</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>10 (38.5%)</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>9 (34.6%)</td>
</tr>
<tr>
<td>Muscle spasms</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>9 (34.6%)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>8 (30.8%)</td>
</tr>
<tr>
<td>Alopecia</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>5 (19.2%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>5 (19.2%)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>4 (15.4%)</td>
</tr>
<tr>
<td>Weight decreased</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>4 (15.4%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3 (11.5%)</td>
</tr>
<tr>
<td>Hypercalcemia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3 (11.5%)</td>
</tr>
<tr>
<td>Hypocalcemia</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3 (11.5%)</td>
</tr>
<tr>
<td>Hypophosphatemia</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3 (11.5%)</td>
</tr>
<tr>
<td>Nail disorder</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>3 (11.5%)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>3 (11.5%)</td>
</tr>
</tbody>
</table>
OMP-54F28 and β-CTX doubling (6 of 26 patients)

- Return of β-CTX to baseline for all 5 patients treated with zoledronic acid (one patient * went to hospice)
- No significant changes in DEXA scans

Zoledronic acid administered

Presented by: Antonio Jimeno MD PhD, University of Colorado, Aurora, CO
Pharmacokinetics

- Linear PK between 2.5 and 20 mg/kg (clearance: 1.45 L/day)
- Terminal half life of 4.3 days (within linear range)
- The volume of distribution was larger than for typical antibody (due to lower MW)
 - 82 KDa without oligosaccharides, 96 KDa with oligosaccharides (IgG ~150 KDa)
- 2 of 26 patients with anti-drug antibodies (preliminary immunogenicity analysis)
 - Late-emerging, no impact on drug exposure
Pharmacodynamics
OMP-54F28 affects WNT-related gene expression patterns in hair follicles

- Decreased expression of WNT pathway target genes (e.g. LGR6, DKK1)
- Increased expression of differentiation genes (NRCAM)
- No significant changes in same genes for control subjects
Thyroid cancer
Non-squamous NSCLC
Time on study

Progressive disease as off-study reason, except 16 (patient decision), 23 (2nd β-CTX doubling) and 24 (adverse event)

As of 23 May 2014

Non-seminoma germ cell tumor
Basal cell carcinoma
Thyroid cancer
Non-squamous NSCLC
Desmoid tumor
Desmoid tumor
Renal cell carcinoma
Pancreatic cancer

Presented by: Antonio Jimeno MD PhD, University of Colorado, Aurora, CO
Patient 14 (desmoid tumor)

- 44 year-old male diagnosed in 2010 with chest wall tumor
- Resected with positive margins
- Relapsed in chest wall in April 2012
- Tumor increased from 3 to 5 cm over ~1 year (with observation)

2 April 2012
14 May 2013 Baseline
18 April 2014 C16
Patient 21 (non-seminoma germ cell tumor)

- 27 year-old male diagnosed in 2004 with lung and brain metastases
- Relapsed in lung and bone in 2011, as teratoma with adenocarcinoma differentiation
- Genetic testing showed beta-catenin exon 3 mutation (D32N)

1 April 2013 20 Sep 2013 26 Mar 2014
Baseline Cycle 8
Summary data for OMP-54F28

• First-in-class decoy receptor inhibiting WNT pathway and with anti-cancer stem cell properties
• Adverse events almost exclusively Grade 1 and 2
 • Dysgeusia, fatigue, muscle spasms and decreased appetite most common
• 20 mg/kg q3w was the highest dose level evaluated (no DLTs)
 • Twice the estimated target efficacious dose
 • One clinically significant Grade 2 bone event after 6 cycles
• β-CTX doubling in 6 of 26 patients, reversed with zoledronic acid in 5 of 5
• PD effects on hair follicles consistent with WNT pathway inhibition
• Several patients with prolonged stable disease
• Three Phase 1b studies are ongoing
 • Hepatocellular cancer (1st-line, with sorafenib)
 • Ovarian cancer (recurrent platinum-sensitive, with carboplatin + paclitaxel)
 • Pancreatic cancer (1st-line, with nab-paclitaxel + gemcitabine)

Presented by: Antonio Jimeno MD PhD, University of Colorado, Aurora, CO
Acknowledgements

• Thank you to all patients who participated in this study and their families
• Thank you to all study personnel involved at study sites
• Study supported by OncoMed Pharmaceuticals, Inc.
• OMP-54F28 is part of OncoMed’s WNT pathway collaboration with Bayer Pharma AG